Helicobacter pylori-pulsed dendritic cells induce H. pylori-specific immunity in mice.

幽门螺杆菌脉冲树突状细胞可诱导小鼠产生幽门螺杆菌特异性免疫

阅读:4
作者:Zhang Min, Berndt Bradford E, Eaton Kathryn A, Rathinavelu Sivaprakash, Pierzchala Anna, Kao John Y
BACKGROUND: The growing concern over the emergence of antibiotic-resistant Helicobacter pylori infection is propelling the development of an efficacious vaccine to control this highly adaptive organism. AIM: We studied the use of a dendritic cell (DC)-based vaccine against H. pylori infection in mice. METHODS: The cellular immune responses to murine bone marrow-derived DCs pulsed with phosphate-buffered saline (PBS-DC) or live H. pylori SS1 (HP-DC) were assessed in vitro and in vivo. The protective immunity against H. pylori SS1 oral challenge was compared between HP-DC or PBS-DC immunized mice. The effect of regulatory T-cell (Treg) depletion by anti-CD25 antibody on HP-DC vaccine efficacy was also evaluated. RESULTS: HP-DC induced a Th1-dominant response in vitro. In vivo, HP-DC immunized mice were characterized by a mixed Th1/Th2 peripheral immune response. However, in the stomach, HP-DC immunized mice expressed a higher level of IFN-gamma compared to PBS-DC immunized mice; no difference was found for interleukin-5 expressions in the stomach. A lower bacterial colonization post-H. pylori challenge was observed in HP-DC immunized mice compared to PBS-DC immunized mice with no significant difference in gastritis severity. H. pylori-specific Th1 response and protective immunity were further enhanced in vivo by depletion of Treg with anti-CD25 antibody. CONCLUSION: DC-based anti-H. pylori vaccine induced H. pylori-specific helper T-cell responses capable of limiting bacterial colonization. Our data support the critical role of effector cellular immune response in the development of H. pylori vaccine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。