Matrix metalloproteinase-9 (MMP-9) and lipopolysaccharide (LPS) levels are known to be elevated in obesity and contribute to metabolic dysfunction. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous ligand of the aryl hydrocarbon receptor (AhR), has been implicated in the regulation of inflammatory responses. This study aimed to determine whether ITE can inhibit LPS-induced MMP-9 expression in monocytic cells and to explore the underlying signaling mechanisms involved. Human monocytic THP-1 cells and primary human monocytes were treated with LPS in the presence or absence of ITE. MMP-9 mRNA and protein levels were assessed using quantitative real-time PCR and ELISA, respectively, while gelatin zymography was employed to evaluate MMP-9 enzymatic activity. Chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) was performed to assess NF-κB and AP-1 binding to the MMP-9 promoter region. Our findings demonstrate that ITE significantly suppresses LPS-induced MMP-9 gene and protein expression. This suppression is associated with a marked reduction in LPS-induced NF-κB and AP-1 transcriptional activity. ChIP-qPCR confirmed that ITE attenuates the recruitment of NF-κB and AP-1 to the MMP-9 promoter, thereby inhibiting its transcription. In summary, ITE downregulates LPS-induced MMP-9 expression by interfering with NF-κB/AP-1 signaling, suggesting a potential anti-inflammatory mechanism that could be relevant in the context of MMP-9-driven inflammatory conditions.
Tryptophan Metabolite ITE Attenuates LPS-Induced MMP-9 via NF-κB/AP-1 in Monocytes.
色氨酸代谢物ITE通过NF-κB/AP-1减弱LPS诱导的单核细胞MMP-9
阅读:7
作者:Bahman Fatemah, Akhter Nadeem, Kochumon Shihab, Al-Mulla Fahd, Ahmad Rasheed
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 13; 26(12):5663 |
| doi: | 10.3390/ijms26125663 | 研究方向: | 代谢 |
| 信号通路: | NF-κB | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
