Standard immunofluorescence imaging captures just ~4 molecular markers (4-plex) per cell, limiting dissection of complex biology. Inspired by multimodal omics-based data integration approaches, we propose an Extensible Immunofluorescence (ExIF) framework that transforms carefully designed but easily produced panels of 4-plex immunofluorescence into a unified dataset with theoretically unlimited marker plexity, using generative deep learning-based virtual labelling. ExIF enables integrated analyses of complex cell biology, exemplified here through interrogation of the epithelial-mesenchymal transition (EMT), driving significant improvements in downstream quantitative analyses usually reserved for omics data, including: classification of cell phenotypes; manifold learning of cell phenotype heterogeneity; and pseudotemporal inference of molecular marker dynamics. Introducing data integration concepts from omics to microscopy, ExIF empowers life scientists to use routine 4-plex fluorescence microscopy to quantitatively interrogate complex, multimolecular single-cell processes in a manner that approaches the performance of multiplexed labelling methods whose uptake remains limited.
Extensible Immunofluorescence (ExIF) accessibly generates high-plexity datasets by integrating standard 4-plex imaging data.
可扩展免疫荧光 (ExIF) 通过整合标准 4 重成像数据,可便捷地生成高复杂度数据集
阅读:4
作者:Gunawan Ihuan, Kohane Felix V, Dey Moumitha, Nguyen Kathy, Zheng Ye, Neumann Daniel P, Vafaee Fatemeh, Meijering Erik, Lock John G
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 May 17; 16(1):4606 |
| doi: | 10.1038/s41467-025-59592-7 | 方法学: | IF |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
