Dual nature of type I interferon responses and feedback regulations by SOCS1 dictate malaria mortality.

I 型干扰素反应的双重性质和 SOCS1 的反馈调节决定了疟疾的死亡率

阅读:5
作者:Lu Jiansen, Hu Zhiqiang, Jiang Huaji, Wen Zebin, Li Hongyu, Li Jian, Zeng Ke, Xie Yingchao, Chen Huadan, Su Xin-Zhuan, Cai Chunmei, Yu Xiao
INTRODUCTION: Type I interferon (IFN-I, IFN-α/β), precisely controlled by multiple regulators, including suppressor of cytokine signaling 1 (SOCS1), is critical for host defense against pathogens. However, the impact of IFN-α/β on malaria parasite infections, beneficial or detrimental, remains controversial. OBJECTIVES: The contradictory results are suspected to arise from differences in parasite species and host genetic backgrounds. To date, no prior study has employed a comparative approach utilizing two parasite models to investigate the underlying mechanisms of IFN-I response. Moreover, whether and how SOCS1 involves in the distinct IFN-α/β dynamics is still unclear. METHODS: Here we perform single-cell RNA sequencing analyses (scRNA-seq) to dissect the dynamics of IFN-α/β responses against P. yoelii 17XL (17XL) and P. berghei ANKA (PbANKA) infections; conduct flow cytometry analysis and functional depletion to identify key cellular players induced by IFN-I; and establish mathematical models to explore the mechanisms underlying the differential IFN-I dynamics regulated by SOCS1. RESULTS: 17XL stimulates an early protective but insufficient toll-like receptor 7 (TLR7)-interferon regulatory factor 7 (IRF7)-dependent IFN-α/β response, resulting in CD11a(hi)CD49d(hi)CD4(+) T cell activation to enhance anti-malarial immunity. On the contrary, a late IFN-α/β induction through toll-like receptor 9 (TLR9)-IRF7/ stimulator of interferon genes (STING)- interferon regulatory factor 3 (IRF3) dependent pathways expands programmed cell death protein 1 (PD-1)(+)CD8(+) T cells and impairs host immunity during PbANKA infection. Furthermore, functional assay and mathematical modeling show that SOCS1 significantly suppresses IFN-α/β production via negative feedback and incoherent feed-forward loops (I1-FFL). Additionally, differential activation patterns of various transcriptional factors (TFs) synergistically regulate the distinct IFN-I responses. CONCLUSION: This study reveals the dual functions of IFN-I in anti-malarial immunity: Early IFN-α/β enhances immune responses against Plasmodium infection by promoting CD11a(hi)CD49d(hi)CD4(+) T cell, while late IFN-α/β suppresses these response by expanding PD-1(+)CD8(+) T cells. Moreover, both the SOCS1-related network motifs and TFs activation patterns contribute to determine distinct dynamics of IFN-I responses. Hence, our findings suggest therapies targeting SOCS1- or TFs-regulated IFN-I dynamics could be an efficacious approach for preventing malaria and enhancing vaccine efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。