Adhesive interactions between endothelial cells and leukocytes contribute to atherosclerotic plaque growth. However, mechanism(s) responsible for endothelial priming and deactivation in inflammatory diseases such as atherosclerosis are not clear. Apolipoprotein E deficient mice were generated with deficiency of P-selectin glycoprotein ligand-1 (Psgl-1(-/-), ApoE(-/-)). On both standard chow and Western diet, Psgl-1(-/-), ApoE(-/-) mice were protected against atherosclerosis compared to Psgl-1(+/+), ApoE(-/-) controls. Psgl-1(-/-), ApoE(-/-) mice also showed reduced leukocyte rolling and firm attachment on endothelial cells, however, adoptively transferred Psgl-1(+/+), ApoE(-/-) leukocytes into Psgl-1(-/-), ApoE(-/-) hosts displayed similar reduced rolling as Psgl-1(-/-), ApoE(-/-) leukocytes. Hematopoietic deficiency of Psgl-1 conferred resistance to the effects of interleukin-1β (IL-1β) on leukocyte rolling along with reduced circulating levels of sP-sel and sE-sel. Antibody blockade of Psgl-1 also reduced endothelial activation in response to IL-1β, eliminated leukocyte rolling, and was protective against atherosclerosis in ApoE(-/-) mice. Monocyte depletion with clodronate restored the endothelial response to IL-1β in Psgl-1(-/-) mice. This study suggests that Psgl-1 deficiency leads to reduced atherosclerosis and adhesive interactions between endothelial cells and leukocytes by indirectly regulating endothelial responses to cytokine stimulation.
P-selectin glycoprotein ligand-1 deficiency leads to cytokine resistance and protection against atherosclerosis in apolipoprotein E deficient mice.
P-选择素糖蛋白配体-1缺乏可导致载脂蛋白E缺乏小鼠产生细胞因子抵抗力并抵抗动脉粥样硬化
阅读:4
作者:Luo Wei, Wang Hui, Ohman Miina K, Guo Chiao, Shi Kate, Wang Julia, Eitzman Daniel T
| 期刊: | Atherosclerosis | 影响因子: | 5.700 |
| 时间: | 2012 | 起止号: | 2012 Jan;220(1):110-7 |
| doi: | 10.1016/j.atherosclerosis.2011.10.012 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
