Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis.

熊果酸可保护糖尿病小鼠免受单核细胞功能障碍和加速动脉粥样硬化的影响

阅读:5
作者:Ullevig Sarah L, Zhao Qingwei, Zamora Debora, Asmis Reto
AIMS: Accelerated atherosclerosis is a major diabetic complication initiated by the enhanced recruitment of monocytes into the vasculature. In this study, we examined the therapeutic potential of the phytonutrients ursolic acid (UA) and resveratrol (RES) in preventing monocyte recruitment and accelerated atherosclerosis. METHODS AND RESULTS: Dietary supplementation with either RES or UA (0.2%) protected against accelerated atherosclerosis induced by streptozotocin in high-fat diet-fed LDL receptor-deficient mice. However, mice that received dietary UA for 11 weeks were significantly better protected and showed a 53% reduction in lesion formation while mice fed a RES-supplemented diet showed only a 31% reduction in lesion size. Importantly, UA was also significantly more effective in preventing the appearance of proinflammatory GR-1(high) monocytes induced by these diabetic conditions and reducing monocyte recruitment into MCP-1-loaded Matrigel plugs implanted into these diabetic mice. Oxidatively stressed THP-1 monocytes mimicked the behavior of blood monocytes in diabetic mice and showed enhanced responsiveness to monocyte chemoattractant protein-1 (MCP-1) without changing MCP-1 receptor (CCR2) surface expression. Pretreatment of THP-1 monocytes with RES or UA (0.3-10μM) for 15h resulted in the dose-dependent inhibition of H(2)O(2)-accelerated chemotaxis in response to MCP-1, but with an IC(50) of 0.4μM, UA was 2.7-fold more potent than RES. CONCLUSION: Dietary UA is a potent inhibitor of monocyte dysfunction and accelerated atherosclerosis induced by diabetes. These studies identify ursolic acid as a potential therapeutic agent for the treatment of diabetic complications, including accelerated atherosclerosis, and provide a novel mechanism for the anti-atherogenic properties of ursolic acid.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。