The role of the 18-kDa isoform of fibroblast growth factor-2 (FGF2) in the maintenance of bone mass was examined in Col3.6-18-kDa FGF2-IRES-GFPsaph transgenic (18-kDa TgFGF2) mice in which a 3.6-kb fragment of the type I collagen 5'-regulatory region (Col3.6) drives the expression of only the 18-kDa isoform of FGF2 with green fluorescent protein-sapphire (GFPsaph). Vector only transgenic mice (Col3.6-IRES-GFPsaph, VTg) were also developed as a control, and mice specifically deficient in 18-kDa FGF2 (FGF2(lmw)(-/-)) were also examined. Bone mineral density, femoral bone volume, trabecular thickness, and cortical bone area and thickness were significantly increased in 18-kDa TgFGF2 mice compared with VTg. Bone marrow cultures (BMSC) from 18-kDa TgFGF2 mice produced more mineralized nodules than VTg. Increased bone formation was associated with reduced expression of the Wnt antagonist secreted frizzled receptor 1 (sFRP-1). In contrast to 18-kDa TgFGF2 mice, FGF2(lmw)(-/-) mice have significantly reduced bone mineral density and fewer mineralized nodules, coincident with increased expression of sFRP-1 in bones and BMSC. Moreover, silencing of sFRP-1 in BMSC from FGF2(lmw)(-/-) mice reversed the decrease in beta-catenin and Runx2 mRNA. Assay of Wnt/beta-catenin-mediated transcription showed increased and decreased TCF-luciferase activity in BMSC from 18-kDa TgFGF2 and FGF2(lmw)(-/-) mice, respectively. Collectively, these results demonstrate that the 18-kDa FGF2 isoform is a critical determinant of bone mass in mice by modulation of the Wnt signaling pathway.
Exported 18-kDa isoform of fibroblast growth factor-2 is a critical determinant of bone mass in mice.
18 kDa 成纤维细胞生长因子-2 的输出亚型是小鼠骨量的关键决定因素
阅读:7
作者:Xiao Liping, Liu Peng, Li Xiaofeng, Doetschman Thomas, Coffin J Douglas, Drissi Hicham, Hurley Marja M
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2009 | 起止号: | 2009 Jan 30; 284(5):3170-3182 |
| doi: | 10.1074/jbc.M804900200 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
