OBJECTIVE: To compare two clinically applied treatments to stimulate bone healing-low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF)-for their effects on RANKL and OPG expression in osteoblast-like cells in vitro. MATERIALS AND METHODS: LIPUS or PEMF was applied to Saos-2 cells for 10 minutes or 3 hours. RANKL and OPG expressions were analyzed at 0, 4, 8, or 12 hours after treatment with real-time PCR. Secreted protein levels in culture supernatant were analyzed at the same posttreatment time points using specific ELISA assays. RESULTS: Neither LIPUS nor PEMF had an effect on RANKL protein expression. OPG protein was significantly increased by LIPUS after 0 and 4 hours (brief short-term effect) and was increased almost 2.5-fold by PEMF after 8 hours. The mRNA levels of OPG and RANKL were hardly affected by LIPUS treatment at any time point. PEMF induced a fivefold increase in RANKL mRNA expression at t = 0. A brief PEMF treatment of 10 minutes resulted in downregulation of RANKL expression after 0 and 4 hours and upregulation at 12 hours. OPG mRNA was downregulated after 8 hours. CONCLUSION: The effects of LIPUS or PEMF expression on OPG and RANKL are limited. From our experiments, it seems that LIPUS treatment resulted in a quick protein response, while the response of cells to PEMF (3 hours) was delayed. The increase in OPG protein at 8 hours post PEMF treatment is indicative of reduction of osteolysis.
Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells.
比较低强度脉冲超声和脉冲电磁场治疗对人成骨细胞样细胞中 OPG 和 RANKL 表达的影响
阅读:5
作者:Borsje Manon A, Ren Yijin, de Haan-Visser H Willy, Kuijer Roel
| 期刊: | Angle Orthodontist | 影响因子: | 3.200 |
| 时间: | 2010 | 起止号: | 2010 May;80(3):498-503 |
| doi: | 10.2319/060809-318.1 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
