Gut microbiota-associated non-cholesterol sterol dysregulation modulates immune reconstitution during antiretroviral therapy in people living with HIV.

肠道菌群相关的非胆固醇甾醇失调会调节 HIV 感染者在抗逆转录病毒治疗期间的免疫重建

阅读:4
作者:Pan Jingying, Tian Xuebin, Wu Kai, Ji Jia, Dong Mingqing, Sun Ting, Lv Dan, Yao Peng, Lv Longxian, Yao Hangping
Non-cholesterol sterol metabolism plays a crucial role in immune regulation. However, the non-cholesterol sterol profiles, its association with gut dysbiosis, and its impact on the CD4(+) T cell recovery in people living with HIV (PLWH) are yet to be elucidated. In this study, we recruited 37 PLWH and 50 healthy controls to characterize non-cholesterol sterol profiles and gut microbiota composition using targeted liquid chromatography-mass spectrometry and metagenomic analysis. Correlations between sterol profiles and immune cell subsets were assessed. In vitro peripheral blood mononuclear cell (PBMC) model was used to validate key findings. We identified a distinct dysregulation of non-cholesterol sterol metabolism in PLWH, characterized by elevated levels of cholesterol precursors and metabolites and depleted levels of plant sterols, which were linked to gut dysbiosis. Our study results highlighted Oscillibacter spp. as the key regulator of sterol metabolism. Specifically, plant sterols (e.g., brassicasterol and campesterol) were found to be associated with impaired CD4(+) T cell recovery during antiretroviral therapy (ART). These findings were validated using ex vivo PBMC models, which revealed that brassicasterol stimulates T cell abnormal activation and pro-inflammatory cytokine release, whereas lathosterol dampens immune activation and inflammation. In summary, our study highlights the interplay between gut dysbiosis and sterol dysregulation in PLWH, demonstrating that higher brassicasterol levels impair immune recovery post-ART by promoting CD4(+) T cell hyperactivation. Hence, targeting microbial sterol metabolism-through Oscillibacter spp. enrichment or plant sterol modulation-may offer novel therapeutic strategies to optimize ART outcomes by balancing immune activation and resolution.IMPORTANCEThis study is the first to integrate non-cholesterol sterol profiling with gut microbiota analysis in people living with HIV (PLWH), uncovering a unique sterol dysregulation characterized by elevated cholesterol precursors and depleted plant sterols in this population. We demonstrate that Oscillibacter spp. were associated with these metabolic shifts and that specific sterols differentially affect immune recovery: plant sterols such as brassicasterol impede CD4(+) T cell restoration by promoting hyperactivation, whereas the cholesterol derivative lathosterol mitigates inflammation and supports immune reconstitution. These insights reveal novel microbiome-sterol interactions that can be leveraged to develop targeted microbiome- and sterol-based interventions aimed at enhancing antiretroviral therapy efficacy and long-term immune health in PLWH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。