The LIM domain protein LIMD1 is a critical regulator of the Hippo signaling pathway, acting to sequester the kinases LATS1/2 to adherens junctions (AJs) in response to mechanical strain. Here, we identify the molecular basis for LIMD1 binding and recruitment of LATS1/2 to AJs. We show that while the LIM domains of LIMD1 are sufficient for AJ localization and binding to LATS1/2, recruitment of LATS1 to AJ requires both the intrinsically disordered region (IDR) in the N-terminus as well as the LIM domains. We further dissected the LIM domains and found that LIM1 and LIM2, but not LIM3, are necessary for LATS1 AJ localization. Point mutations that disrupt strain sensitivity in either the first or second LIM domain disrupt both binding and recruitment of LATS1/2 to AJs. Mechanistically, LIMD1 binds LATS1/2 through a conserved linear motif, the LATS-LATCH, which we identified by AlphaFold modeling and confirmed by biochemical and localization assays. The LATS-LATCH is both necessary and sufficient for strain-dependent recruitment of LATS1/2 to AJs. Mutation of predicted contact residues within the LATS-LATCH both disrupts its binding to LIMD1 and localization to AJs. These findings define a bipartite mechanism for LIMD1-dependent recruitment of LATS1/2 involving LIM domain-LATCH interactions and N-terminal IDR functions, providing insight into how mechanical signals are transduced through the Hippo pathway.
Regulation of tension-dependent localization of LATS1 and LATS2 to adherens junctions.
LATS1 和 LATS2 在粘附连接处的张力依赖性定位的调控
阅读:4
作者:De Silva Chamika, Kelch Brian A, McCollum Dannel
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Aug 27 |
| doi: | 10.1101/2025.08.26.672419 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
