OBJECTIVE: Type 2 diabetes has become a global epidemic, and Asian Indians have a higher susceptibility to diabetes than Europeans. We investigated whether Indians had any metabolic differences compared with Northern European Americans that may render them more susceptible to diabetes. RESEARCH DESIGN AND METHODS: We studied 13 diabetic Indians, 13 nondiabetic Indians, and 13 nondiabetic Northern European Americans who were matched for age, BMI, and sex. The primary comparisons were insulin sensitivity by hyperinsulinemic-euglycemic clamp and skeletal muscle mitochondrial capacity for oxidative phosphorylation (OXPHOS) by measuring mitochondrial DNA copy number (mtDNA), OXPHOS gene transcripts, citrate synthase activity, and maximal mitochondrial ATP production rate (MAPR). Other factors that may cause insulin resistance were also measured. RESULTS: The glucose infusion rates required to maintain identical glucose levels during the similar insulin infusion rates were substantially lower in diabetic Indians than in the nondiabetic participants (P < 0.001), and they were lower in nondiabetic Indians than in nondiabetic Northern European Americans (P < 0.002). mtDNA (P < 0.02), OXPHOS gene transcripts (P < 0.01), citrate synthase, and MAPR (P < 0.03) were higher in Indians irrespective of their diabetic status. Intramuscular triglyceride, C-reactive protein, interleukin-6, and tumor necrosis factor-alpha concentrations were higher, whereas adiponectin concentrations were lower in diabetic Indians. CONCLUSIONS: Despite being more insulin resistant, diabetic Indians had similar muscle OXPHOS capacity as nondiabetic Indians, demonstrating that diabetes per se does not cause mitochondrial dysfunction. Indians irrespective of their diabetic status had higher OXPHOS capacity than Northern European Americans, although Indians were substantially more insulin resistant, indicating a dissociation between mitochondrial dysfunction and insulin resistance.
Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance.
印度裔人群骨骼肌线粒体产生 ATP 的能力增强,但同时伴有严重的胰岛素抵抗
阅读:3
作者:Nair K Sreekumaran, Bigelow Maureen L, Asmann Yan W, Chow Lisa S, Coenen-Schimke Jill M, Klaus Katherine A, Guo Zeng-Kui, Sreekumar Raghavakaimal, Irving Brian A
| 期刊: | Diabetes | 影响因子: | 7.500 |
| 时间: | 2008 | 起止号: | 2008 May;57(5):1166-75 |
| doi: | 10.2337/db07-1556 | 研究方向: | 代谢 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
