Cellular and molecular maturation in fetal and adult ovine calcaneal tendons.

胎儿和成年绵羊跟腱的细胞和分子成熟

阅读:4
作者:Russo Valentina, Mauro Annunziata, Martelli Alessandra, Di Giacinto Oriana, Di Marcantonio Lisa, Nardinocchi Delia, Berardinelli Paolo, Barboni Barbara
Processes of development during fetal life profoundly transform tendons from a plastic tissue into a highly differentiated structure, characterised by a very low ability to regenerate after injury in adulthood. Sheep tendon is frequently used as a translational model to investigate cell-based regenerative approaches. However, in contrast to other species, analytical and comparative baseline studies on the normal developmental maturation of sheep tendons from fetal through to adult life are not currently available. Thus, a detailed morphological and biochemical study was designed to characterise tissue maturation during mid- (2†months of pregnancy: 14†cm of length) and late fetal (4†months: 40†cm of length) life, through to adulthood. The results confirm that ovine tendon morphology undergoes profound transformations during this period. Endotenon was more developed in fetal tendons than in adult tissues, and its cell phenotype changed through tendon maturation. Indeed, groups of large rounded cells laying on smaller and more compacted ones expressing osteocalcin, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were identified exclusively in fetal mid-stage tissues, and not in late fetal or adult tendons. VEGF, NGF as well as blood vessels and nerve fibers showed decreased expression during tendon development. Moreover, the endotenon of mid- and late fetuses contained identifiable cells that expressed several pluripotent stem cell markers [Telomerase Reverse Transcriptase (TERT), SRY Determining Region Y Box-2 (SOX2), Nanog Homeobox (NANOG) and Octamer Binding Transcription Factor-4A (OCT-4A)]. These cells were not identifiable in adult specimens. Ovine tendon development was also accompanied by morphological modifications to cell nuclei, and a progressive decrease in cellularity, proliferation index and expression of connexins 43 and 32. Tendon maturation was similarly characterised by modulation of several other gene expression profiles, including Collagen type I, Collagen type III, Scleraxis B, Tenomodulin, Trombospondin 4 and Osteocalcin. These gene profiles underwent a dramatic reduction in adult tissues. Transforming growth factor-β~1 expression (involved in collagen synthesis) underwent a similar decrease. In conclusion, these morphological studies carried out on sheep tendons at different stages of development and aging offer normal structural and molecular baseline data to allow accurate evaluation of data from subsequent interventional studies investigating tendon healing and regeneration in ovine experimental models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。