Induction of neuronal differentiation of rat muscle-derived stem cells in vitro using basic fibroblast growth factor and ethosuximide.

利用碱性成纤维细胞生长因子和乙琥胺在体外诱导大鼠肌肉来源干细胞的神经元分化

阅读:7
作者:Kang Mi Lan, Kwon Jin Seon, Kim Moon Suk
Several studies have demonstrated that basic fibroblast growth factor (bFGF) can induce neural differentiation of mesenchymal stem cells. In this study, we investigated the neural differentiation of muscle-derived stem cells (MDSCs) following treatment with bFGF and ethosuximide, a small molecule used as an anticonvulsant in humans. Stem cells isolated from rat skeletal muscle (rMDSCs) were pre-induced by culturing with 25 ng/mL bFGF for 24 h and then were transferred to a medium supplemented with or without 4 mM ethosuximide. Neuronal differentiation was assessed by immunocytochemical and western blotting analyses of marker expression. Immunocytochemistry of rMDSCs treated with bFGF and ethosuximide identified abundant cells expressing neuronal markers (TuJ1, neuron-specific class III β-tubulin; NeuN, neuronal nuclear antigen; and NF-MH; neurofilament M and H). Olig2 (oligodendrocyte transcription factor 2)-positive cells were also observed, indicating the presence of oligodendrocyte lineage cells. These findings were substantiated by western blotting analysis of marker proteins. In particular, the expression of NeuN and TuJ1 was significantly higher in rMDSCs treated with ethosuximide and bFGF than in cells stimulated with bFGF alone (NeuN, p < 0.05 and TuJ1, p < 0.001). Expression of the astrocyte marker GFAP (glial fibrillary acidic protein) was not detected in this study. Collectively, the results showed that treatment with bFGF and ethosuximide induced effective transdifferentiation of rMDSCs into cells with a neural-like phenotype. Notably, rMDSCs treated with a combination of bFGF plus ethosuximide showed enhanced differentiation compared with cells treated with bFGF alone, implying that ethosuximide may stimulate neuronal differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。