HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs.

HIF-1介导的代谢重编程降低了ROS水平,促进了肺癌的转移性定植

阅读:5
作者:Zhao Tao, Zhu Yuxi, Morinibu Akiyo, Kobayashi Minoru, Shinomiya Kazumi, Itasaka Satoshi, Yoshimura Michio, Guo Guozheng, Hiraoka Masahiro, Harada Hiroshi
Hypoxia-inducible factor 1 (HIF-1) has been associated with distant tumor metastasis; however, its function in multiple metastatic processes has not yet been fully elucidated. In the present study, we demonstrated that cancer cells transiently upregulated HIF-1 activity during their metastatic colonization after extravasation in the lungs in hypoxia-independent and reactive oxygen species (ROS)-dependent manners. Transient activation induced the expression of lactate dehydrogenase A and phosphorylation of the E1α subunit of pyruvate dehydrogenase, which indicated the reprogramming of glucose metabolic pathways from mitochondrial oxidative phosphorylation to anaerobic glycolysis and lactic acid fermentation. The administration of the HIF-1 inhibitor, YC-1, inhibited this reprogramming, increased intratumoral ROS levels, and eventually suppressed the formation of metastatic lung tumors. These results indicate that HIF-1-mediated metabolic reprogramming is responsible for the survival of metastatic cancers during their colonization in lungs by reducing cytotoxic ROS levels; therefore, its blockade by HIF-1-inhibitors is a rational strategy to prevent tumor metastasis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。