Nitric Oxide-Releasing Nanoscale Metal-Organic Layer Overcomes Hypoxia and Reactive Oxygen Species Diffusion Barriers to Enhance Cancer Radiotherapy.

释放一氧化氮的纳米级金属有机层克服缺氧和活性氧扩散障碍,增强癌症放射治疗效果

阅读:3
作者:Xiong Yuxuan, Li Jinhong, Jiang Xiaomin, Zhen Wenyao, Ma Xin, Lin Wenbin
Hafnium (Hf)-based nanoscale metal-organic layers (MOLs) enhance radiotherapeutic effects of tissue-penetrating X-rays via a unique radiotherapy-radiodynamic therapy (RT-RDT) process through efficient generation of hydroxy radical (RT) and singlet oxygen (RDT). However, their radiotherapeutic efficacy is limited by hypoxia in deep-seated tumors and short half-lives of reactive oxygen species (ROS). Herein the conjugation of a nitric oxide (NO) donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), to the Hf(12) secondary building units (SBUs) of Hf-5,5'-di-p-benzoatoporphyrin MOL is reported to afford SNAP/MOL for enhanced cancer radiotherapy. Under X-ray irradiation, SNAP/MOL efficiently generates superoxide anion (O(2) (-.)) and releases nitric oxide (NO) in a spatio-temporally synchronized fashion. The released NO rapidly reacts with O(2) (-.) to form long-lived and highly cytotoxic peroxynitrite which diffuses freely to the cell nucleus and efficiently causes DNA double-strand breaks. Meanwhile, the sustained release of NO from SNAP/MOL in the tumor microenvironment relieves tumor hypoxia to reduce radioresistance of tumor cells. Consequently, SNAP/MOL plus low-dose X-ray irradiation efficiently inhibits tumor growth and reduces metastasis in colorectal and triple-negative breast cancer models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。