alpha(1)-Adrenoceptors are concentrated in the locus coeruleus (LC) where they appear to regulate various active behaviors but have been difficult to stimulate effectively. The present study examined the behavioral, pharmacological and neural effects of possible stimulation of these receptors with 6-fluoronorepinephrine (6FNE), the only known selective alpha-agonist that has full efficacy at all brain alpha-receptors. Infusion of this compound in the mouse LC was found to produce extreme activation of diverse motivated behaviors of exploration, wheel-running and operant approach responding in different environments consistent with a global behavioral function of the dorsal noradrenergic system. Infusion of selective antagonists of alpha(1)- (terazosin) or alpha(2)- (atipamezole) receptors or of either the partial alpha(1)-agonist, phenylephrine, or full alpha(2)-agonist, dexmedetomidine, indicated that the behavioral effects of 6FNE were due largely due to activation of LC alpha(1)-receptors consistent with the known greater density of alpha(1)- than alpha(2)-adrenoreceptors in the mouse nucleus. Immunohistochemistry of fos in tyrosine hydroxylase-positive LC neurons following IV ventricular infusions indicated that 6FNE markedly depressed whereas terazosin strongly enhanced the apparent functional activity of the nucleus. The changes in fos expression following 6FNE and terazosin were significantly greater than those following dexmedetomidine and atipamezole. It is hypothesized that the alpha(1)-receptors of the mouse LC are strongly activated by 6FNE and serve to potently inhibit its tonic or stress-induced activity which in turn disinhibits prepotent motivated behaviors.
Marked behavioral activation from inhibitory stimulation of locus coeruleus alpha1-adrenoceptors by a full agonist.
完全激动剂抑制蓝斑α1-肾上腺素受体后,引起明显的行为激活
阅读:3
作者:Stone Eric A, Lin Yan, Sarfraz Yasmeen, Quartermain David
| 期刊: | Brain Research | 影响因子: | 2.600 |
| 时间: | 2009 | 起止号: | 2009 Sep 29; 1291:21-31 |
| doi: | 10.1016/j.brainres.2009.07.049 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
