Aging is associated with many functional and morphological central nervous system changes. It is important to distinguish between changes created by normal aging and those caused by disease. In the present study we characterized myelin changes within the murine rubrospinal tract and found that internode lengths significantly decrease as a function of age which suggests active remyelination. We also analyzed the proliferation, distribution and phenotypic fate of dividing cells with Bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU). The data reveal a decrease in glial cell proliferation from 1 to 6, 14 and 21 months of age in gray matter 4 weeks post-BrdU injections. However, we found an increase in gliogenesis at 21st month in white matter of the spinal cord. Half of newly generated cells expressed NG2. Most cells were positive for the early oligodendrocyte marker Olig2 and a few also expressed CC1. Very few cells ever became positive for the astrocytic markers S100beta or GFAP. These data demonstrate ongoing oligodendrogenesis and myelinogenesis as a function of age in the spinal cord.
Age-related myelin dynamics revealed by increased oligodendrogenesis and short internodes.
髓鞘动态随年龄增长而变化,表现为少突胶质细胞生成增加和髓鞘节间变短
阅读:4
作者:Lasiene Jurate, Matsui Aya, Sawa Yuhito, Wong Fernando, Horner Philip J
| 期刊: | Aging Cell | 影响因子: | 7.100 |
| 时间: | 2009 | 起止号: | 2009 Apr;8(2):201-13 |
| doi: | 10.1111/j.1474-9726.2009.00462.x | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
