Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1.

肿瘤周期性缺氧通过上调 ABCB1 的表达和功能,诱导多形性胶质母细胞瘤产生化疗耐药性

阅读:7
作者:Chou Chii-Wen, Wang Chi-Chung, Wu Chung-Pu, Lin Yu-Jung, Lee Yu-Chun, Cheng Ya-Wen, Hsieh Chia-Hung
Tumor cycling hypoxia is now a well-recognized phenomenon in animal and human solid tumors. However, how tumor cycling hypoxia impacts chemotherapy is unclear. In the present study, we explored the impact and the mechanism of cycling hypoxia on tumor microenvironment-mediated chemoresistance. Hoechst 33342 staining and hypoxia-inducible factor-1 (HIF-1) activation labeling together with immunofluorescence imaging and fluorescence-activated cell sorting were used to isolate hypoxic tumor subpopulations from human glioblastoma xenografts. ABCB1 expression, P-glycoprotein function, and chemosensitivity in tumor cells derived from human glioblastoma xenografts or in vitro cycling hypoxic stress-treated glioblastoma cells were determined using Western blot analysis, drug accumulation and efflux assays, and MTT assay, respectively. ABCB1 expression and P-glycoprotein function were upregulated under cycling hypoxia in glioblastoma cells concomitant with decreased responses to doxorubicin and BCNU. However, ABCB1 knockdown inhibited these effects. Moreover, immunofluorescence imaging and flow cytometric analysis for ABCB1, HIF-1 activation, and Hoechst 3342 in glioblastoma revealed highly localized ABCB1 expression predominantly in potentially cycling hypoxic areas with HIF-1 activation and blood perfusion in the solid tumor microenvironment. The cycling hypoxic tumor cells derived from glioblastoma xenografts exhibited higher ABCB1 expression, P-glycoprotein function, and chemoresistance, compared with chronic hypoxic and normoxic cells. Tumor-bearing mice that received YC-1, an HIF-1α inhibitor, exhibited suppressed tumor microenvironment-induced ABCB1 induction and enhanced survival rate in BCNU chemotherapy. Cycling hypoxia plays a vital role in tumor microenvironment-mediated chemoresistance through the HIF-1-dependent induction of ABCB1. HIF-1 blockade before and concurrent with chemotherapy could suppress cycling hypoxia-induced chemoresistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。