OBJECTIVE: Mesenteric lymphatic vessel pumping, important to propel lymph and immune cells from the intestinal interstitium to the mesenteric lymph nodes, is compromised during intestinal inflammation. The objective of this study was to test the hypothesis that the pro-inflammatory cytokine TNF-α, is a significant contributor to the inflammation-induced lymphatic contractile dysfunction, and to determine its mode of action. METHODS: Contractile parameters were obtained from isolated rat mesenteric lymphatic vessels mounted on a pressure myograph after 24-hours incubation with or without TNF-α. Various inhibitors were administered, and quantitative real-time PCR, Western blotting, and immunofluorescence confocal imaging were applied to characterize the mechanisms involved in TNF-α actions. RESULTS: Vessel contraction frequency was significantly decreased after TNF-α treatment and could be restored by selective inhibition of NF-кB, iNOS, guanylate cyclase, and ATP-sensitive K(+) channels. We further demonstrated that NF-кB inhibition also suppressed the significant increase in iNOS mRNA observed in TNF-α-treated lymphatic vessels and that TNF-α treatment favored the nuclear translocation of the p65 NF-κB subunit. CONCLUSIONS: These findings suggest that TNF-α decreases mesenteric lymphatic contractility by activating the NF-κB-iNOS signaling pathway. This mechanism could contribute to the alteration of lymphatic pumping reported in intestinal inflammation.
The pro-inflammatory cytokine TNF-α inhibits lymphatic pumping via activation of the NF-κB-iNOS signaling pathway.
促炎细胞因子 TNF-α 通过激活 NF-κB-iNOS 信号通路抑制淋巴泵送
阅读:3
作者:Chen Yingxuan, Rehal Sonia, Roizes Simon, Zhu Hai-Lei, Cole William C, von der Weid Pierre-Yves
| 期刊: | Microcirculation | 影响因子: | 2.000 |
| 时间: | 2017 | 起止号: | 2017 Apr |
| doi: | 10.1111/micc.12364 | 研究方向: | 细胞生物学 |
| 信号通路: | NF-κB | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
