To overcome the limitations of lymphedema treatment, human adipose-derived stem cells (hADSCs) were injected into decellularized lymph nodes to produce a recellularized lymph node-scaffold, and the effect of lymphangiogenesis was investigated in lymphedema animal models. Axillary lymph nodes were harvested from Sprague Dawley rats (7 weeks old, 220-250 g) for decellularization. The decellularized lymph nodes were performed and PKH26-labeled hADSCs (1âÃâ10(6)/50 µL) were injected in the decellularized lymph node-scaffolds. Forty rats were equally divided into four groups: lymphedema as control group, hADSC group, decellularized lymph node-scaffold group, and recellularized lymph node-scaffold group. The lymphedema model was made by removing inguinal lymph nodes, and hADSCs or scaffolds were transplanted. Histopathological assessments were performed by hematoxylin and eosin and Masson's trichrome staining. Lymphangiogenesis was evaluated by Immunofluorescence staining and western blot. Decellularized lymph nodes showed virtually complete absence of cellular material and maintenance of lymph node architecture. The hADSCs were significantly observed in recellularized lymph node-scaffolds group. The recellularized lymph node-scaffold group was histologically similar to normal lymph nodes. The vascular endothelial growth factor A and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) in immunofluorescence staining were highly expressed in recellularized lymph node-scaffolds group. Also, the expression of LYVE-1 protein significantly increased in recellularized lymph node-scaffold group compared with others. Recellularized lymph node -scaffold had a much better therapeutic effect than stem cells or decellularized lymph node-scaffold alone, and induced stable lymphangiogenesis.
Recellularized lymph node scaffolds with human adipose-derived stem cells enhance lymph node regeneration to improve lymphedema.
利用人脂肪干细胞进行淋巴结再细胞化支架可增强淋巴结再生,从而改善淋巴水肿
阅读:4
作者:Kang Hyo Jin, Moon Soo Young, Kim Baek-Kyu, Myung Yujin, Lee Ju-Hee, Jeong Jae Hoon
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Apr 3; 13(1):5397 |
| doi: | 10.1038/s41598-023-32473-z | 种属: | Human |
| 研究方向: | 发育与干细胞、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
