A microfluidic model of the first sensory synapse for analgesic target discovery.

用于镇痛靶点发现的第一感觉突触的微流控模型

阅读:5
作者:Kimourtzis Georgios, Raouf Ramin
The synaptic connections between dorsal root ganglia (DRG) and dorsal horn (DH) neurons are a crucial relay point for the transmission of painful stimuli. To delineate how synaptic plasticity may modulate the excitability of DH neurons, we have devised a microfluidic co-culture model that recapitulates the first sensory synapse using postnatal mouse sensory neurons. We show that DRG-DH co-cultures characterize salient features of the in vivo physiology of sensory neurons. Immunocytcochemical experiments of the cultured DH neurons show a co-localization of Map2 with VGlut2 and of Map2 with Synapsin 1, corroborating the glutamatergic identity of the DH neurons and further suggesting the potential formation of active synapses in this neuronal set. Fluorometric imaging experiments demonstrate the elicitation of calcium responses in DH neurons following the stimulation of DRG cell bodies or axons. Selective NMDA and AMPA receptor blockade appreciably silences DH neuron responses, suggesting that glutamatergic signaling is maintained in vitro. Last, a surrogate model of peripheral nerve injury is introduced in the form of an axotomy, which results in elevated and prolonged calcium responses of DH neurons. Overall, the microfluidic mouse co-cultures provide a method advancement in the study of periphery-to-center pain signaling, where the potential of utilizing the platform for drug target identification is underscored.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。