Colocalization of Polycystic Ovary Syndrome Candidate Gene Products in Theca Cells Suggests Novel Signaling Pathways.

多囊卵巢综合征候选基因产物在卵泡膜细胞中的共定位提示存在新的信号通路

阅读:3
作者:Kulkarni Rewa, Teves Maria E, Han Angela X, McAllister Jan M, Strauss Jerome F 3rd
Genome-wide association studies identified loci associated with polycystic ovary syndrome (PCOS), including those near the LH receptor gene (LHCGR), a clathrin-binding protein (DENND1A) that functions as a guanine nucleotide exchange factor, and the gene encoding RAB5B, a GTPase involved in vesicular trafficking. We proposed that these three PCOS loci could be assembled into a functional network that contributes to altered gene expression in theca cells, resulting in increased androgen synthesis. The functional significance of this network was supported by our discovery that a truncated protein splice variant of the DENND1A gene, termed DENND1A.V2, is elevated in PCOS theca cells, and that forced expression of DENND1A.V2 in normal theca cells increased CYP11A1 and CYP17A1 expression and androgen synthesis, a hallmark of PCOS. In this study, we demonstrate the colocalization of LHCGR, DENND1AV.2, and RAB5B proteins in various cellular compartments in normal and PCOS theca cells by immunofluorescence. Human chorionic gonadotropin and forskolin stimulation was shown to affect the cytoplasmic distribution of LHCGR, DENND1A.V2, and RAB5B. DENND1A.V2 accumulated in the nuclei of the theca cells. Moreover, PCOS theca cells, following forskolin treatment, had a significantly greater relative abundance of nuclear DENND1A.V2. RAB5B also accumulated in the nuclei of PCOS theca cells treated with forskolin. In contrast, LHCGR did not enter the nucleus. This cytological evidence, and the previously reported increase in androgen biosynthesis with forced expression of DENND1A.V2 in normal theca cells, raises the possibility that DENND1A.V2 and RAB5B participate in increasing transcription of genes involved in androgen synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。