Anti-high mobility group box 1 antibody suppresses local inflammatory reaction and facilitates olfactory nerve recovery following injury.

抗高迁移率族蛋白1抗体可抑制局部炎症反应,促进嗅神经损伤后的恢复

阅读:4
作者:Kobayashi Masayoshi, Tamari Kengo, Al Salihi Mohammed Omar, Nishida Kohei, Takeuchi Kazuhiko
BACKGROUND: Refractory olfactory dysfunction is a common finding in head trauma due to olfactory nerve injury. Anti-inflammatory treatment using steroids is known to contribute to functional recovery of the central and peripheral nervous systems in injury models, while there is a concern that steroids can induce side effects. The present study examines if the inhibition of proinflammatory cytokine, high mobility group box 1 (HMGB1), can facilitate olfactory functional recovery following injury. METHODS: Olfactory nerve transection (NTx) was performed in OMP-tau-lacZ mice to establish injury models. We measured HMGB1 gene expression in the olfactory bulb using semi-quantitative polymerase chain reaction (PCR) assays and examined HMGB1 protein localization in the olfactory bulb using immunohistochemical staining. Anti-HMGB1 antibody was intraperitoneally injected immediately after the NTx and histological assessment of recovery within the olfactory bulb was performed at 5, 14, 42, and 100 days after the drug injection. X-gal staining labeled OMP in the degenerating and regenerating olfactory nerve fibers, and immunohistochemical staining detected the presence of reactive astrocytes and macrophages/microglia. Olfactory function was assessed using both an olfactory avoidance behavioral test and evoked potential recording. RESULTS: HMGB1 gene and protein were significantly expressed in the olfactory bulb 12 h after NTx. Anti-HMGB1 antibody-injected mice showed significantly smaller areas of injury-associated tissue, fewer astrocytes and macrophages/microglia and an increase in regenerating nerve fibers. Both an olfactory avoidance behavioral test and evoked potential recordings showed improved functional recovery in the anti-HMGB1 antibody-injected mice. CONCLUSIONS: These findings suggest that inhibition of HMGB1 could provide a new therapeutic strategy for the treatment of olfactory dysfunction following head injuries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。