Direct comparison of five different 3D extracellular matrix model systems for characterization of cancer cell migration.

直接比较五种不同的 3D 细胞外基质模型系统,用于表征癌细胞迁移

阅读:11
作者:Shinsato Yoshinari, Doyle Andrew D, Li Weimin, Yamada Kenneth M
BACKGROUND: Three-dimensional (3D) in vitro model systems can bridge the gap between regular two-dimensional cell culture and whole-animal studies. Analyses of cancer cell migration and invasion increasingly use differing 3D systems, which may produce conflicting findings. AIMS: We directly compared different 3D extracellular matrix systems for studying cancer cell migration/invasion by analyzing cell morphologies and quantifying aspects of cell migration including speed and directional persistence using automated computer-based cell tracking. METHODS AND RESULTS: We performed direct comparisons of five different 3D extracellular matrix cell culture systems using both HT1080 fibrosarcoma and MDA-MB-231 breast carcinoma cell lines. The reconstituted 3D systems included two types of collagen hydrogel and tissue matrix gel (TMG) vs cell-derived matrices extracted from cultured primary human or cancer-associated fibroblasts. The fibrillar matrix architecture of these systems differed. 3D rat tail collagen and TMG matrices had short, randomly oriented collagen fibrils; bovine collagen had long, larger fibril bundles; and the cell-derived matrices were strongly oriented. HT1080 cells displayed rounded morphologies in all three reconstituted 3D matrices but became spindle shaped in the two cell-derived matrices. MDA-MB-231 cell morphologies were elongated in all matrices. Quantitative measures of cell migration parameters differed markedly between the different types of 3D matrix. Comparing the reconstituted matrices, cells migrated the most rapidly and furthest in TMG. Comparing TMG with cell-derived matrices, cells migrated more efficiently in the cell-derived matrices. The most notable differences were in directional persistence of migration, which was greatest in the two cell-derived matrices. CONCLUSION: The morphologies of matrix fibrils and cell shape, and particularly the efficiency and directionality of cell migration, differed substantially depending on the type of 3D matrix system. We suggest that it is important to employ the 3D model system that most closely resembles the matrix environment being studied for analyses of cancer cell migration and invasion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。