BACKGROUND: Neural tissue has limited regenerative ability. To cope with that, in recent years a diverse set of novel tools has been used to tailor neurostimulation therapies and promote functional regeneration after axonal injuries. METHOD: In this report, we explore cell-specific methods to modulate neuronal activity, including opto- and chemogenetics to assess the effect of specific neuronal stimulation in the promotion of axonal regeneration after injury. RESULTS: Opto- and chemogenetic stimulations of neuronal activity elicited increased in vitro neurite outgrowth in both sensory and cortical neurons, as well as in vivo regeneration in the sciatic nerve, but not after spinal cord injury. Mechanistically, inhibitory substrates such as chondroitin sulfate proteoglycans block the activity induced increase in axonal growth. CONCLUSIONS: We found that genetic modulations of neuronal activity on both dorsal root ganglia and corticospinal motor neurons increase their axonal growth capacity but only on permissive environments.
Genetic control of neuronal activity enhances axonal growth only on permissive substrates.
神经元活动的基因控制仅在允许的基质上才能促进轴突生长
阅读:8
作者:Mesquida-Veny Francina, MartÃnez-Torres Sara, Del RÃo José Antonio, Hervera Arnau
| 期刊: | Molecular Medicine | 影响因子: | 6.400 |
| 时间: | 2022 | 起止号: | 2022 Aug 17; 28(1):97 |
| doi: | 10.1186/s10020-022-00524-2 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
