As a multitissue organ, the eye possesses unique anatomy and physiology, including differential expression of drug-metabolizing enzymes. Several hydrolytic enzymes that play a major role in drug metabolism and bioactivation of prodrugs have been detected in ocular tissues, but data on their quantitative expression is scarce. Also, many ophthalmic drugs are prone to hydrolysis. Metabolic characterization of individual ocular tissues is useful for the drug development process, and therefore, seven individual ocular tissues from human eyes were analyzed for the activity and expression of carboxylesterases (CESs) and arylacetamide deacetylase (AADAC). Generic and selective human esterase substrates 4-nitrophenyl acetate (most esterases), D-luciferin methyl ester (CES1), fluorescein diacetate and procaine (CES2), and phenacetin (AADAC) were applied to determine the enzymes' specific activities. Enzyme kinetics and inhibition studies were performed with isoform-selective inhibitors digitonin (CES1) and verapamil and diltiazem (CES2). Enzyme contents were determined using quantitative targeted proteomics, and CES2 expression was confirmed by western blotting. The expression and activity of human CES1 among ocular tissues varied by >10-fold, with the highest levels found in the retina and iris-ciliary body. In contrast, human CES2 expression appeared lower and more similar between tissues, whereas AADAC could not be detected. Inhibition studies showed that hydrolysis of fluorescein diacetate is also catalyzed by enzymes other than CES2. This study provides, for the first time, quantitative information on the tissue-dependent expression of human ocular esterases, which can be useful for the development of ocular drugs, prodrugs, and in pharmacokinetic modeling of the eye. SIGNIFICANCE STATEMENT: Novel and comprehensive data on the protein expression and activities of carboxylesterases from individual human eye tissues are generated. In combination with previous reports on preclinical species, this study will improve the understanding of interspecies differences in ocular drug metabolism and aid the development of ocular pharmacokinetics models.
Activity and Expression of Carboxylesterases and Arylacetamide Deacetylase in Human Ocular Tissues.
人眼组织中羧酸酯酶和芳基乙酰胺脱乙酰酶的活性和表达
阅读:5
作者:Hammid Anam, Fallon John K, Lassila Toni, Vieiro Paula, Balla Anusha, Gonzalez Francisco, Urtti Arto, Smith Philip C, Tolonen Ari, Honkakoski Paavo
| 期刊: | Drug Metabolism and Disposition | 影响因子: | 4.000 |
| 时间: | 2022 | 起止号: | 2022 Dec;50(12):1483-1492 |
| doi: | 10.1124/dmd.122.000993 | 种属: | Human |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
