Petiveria alliacea and Caesalpinia spinosa extracts reduce the generation of cancer-associated fibroblasts in a 3D platform representative of the tumor microenvironment

Petiveria alliacea 和 Caesalpinia spinosa 提取物可减少代表肿瘤微环境的 3D 平台中癌症相关成纤维细胞的生成。

阅读:5
作者:María Camila Jimenez ,Paola Lasso ,Susana Fiorentino ,Alfonso Barreto
BACKGROUND: The tumor microenvironment (TME) is a complex network of cellular and acellular participants, each of which contributes to ensuring tumor growth. Cancer-associated fibroblasts (CAFs) represent a key TME population that actively participates in stromal remodeling and metabolic coupling with tumors, significantly favoring both the process of carcinogenesis and the establishment of metastasis. Therefore, developing therapies that target CAFs constitute valuable therapeutic alternatives. However, efficiently modeling the generation of CAFs in the tumor microenvironment is challenging. METHODS: We constructed a 3D structure of the tumor microenvironment (TME), which we refer to as "TME spheroids". These spheroids are composed of 4T1 murine breast cancer cells and 3T3 murine fibroblasts, allowing us to mimic the development of a cancer-associated fibroblast (CAF) phenotype. This novel 3D model serves as a platform for evaluating the impact of two natural extracts on TME interactions and their ability to impede tumor progression. RESULTS: Using the TME-spheroid model, we tested the effects of two extracts on CAF generation: Anamu-SC obtained from Petiveria alliacea and P2Et from Caesalpinia spinosa. Both extracts disrupted the interaction between tumor cells and fibroblasts, reducing the ability of CAFs to support tumor growth and spread. CONCLUSIONS: We found that the two extracts interfere with circuits that drive tumor-fibroblast crosstalk, attenuating the phenotype and functional activities associated with CAFs in this TME model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。