Epithelial-to-Mesenchymal Transition and Neoangiogenesis in Laryngeal Squamous Cell Carcinoma.

喉鳞状细胞癌的上皮间质转化和新生血管生成

阅读:6
作者:Franz Leonardo, Nicolè Lorenzo, Frigo Anna Chiara, Ottaviano Giancarlo, Gaudioso Piergiorgio, Saccardo Tommaso, Visconti Francesca, Cappellesso Rocco, Blandamura Stella, Fassina Ambrogio, Marioni Gino
The mechanism of epithelial-mesenchymal transition (EMT) is fundamental for carcinogenesis, tumor progression, cancer cell invasion, metastasis, recurrence, and therapy resistance, comprising important events, such as cellular junction degradation, downregulation of epithelial phenotype markers, overexpression of mesenchymal markers, and increase in cellular motility. The same factors that drive epithelial cells toward a mesenchymal phenotype may also drive endothelial cells toward a proangiogenic phenotype. The aim of this exploratory study was to investigate a potential interplay between EMT and angiogenesis (quantified through CD105 expression) in laryngeal carcinoma (LSCC). CD105-assessed microvessel density (MVD) and EMT markers (E-cadherin, N-cadherin, Snail, Slug, Zeb1, and Zeb2) were assessed on 37 consecutive LSCC cases. The univariate Cox regression model identified pN+ status (p = 0.0343) and Slug expression (p = 0.0268) as predictive of disease-free survival (DFS). A trend toward significance emerged for CD105-assessed MVD (p = 0.0869) and N-cadherin expression (p = 0.0911). In the multivariate Cox model, pN-status, Slug, and N-cadherin expressions retained their significant values in predicting DFS (p = 0.0346, p = 0.0430, and p = 0.0214, respectively). Our data support the hypothesis of a mutual concurrence of EMT and angiogenesis in driving LSCC cells toward an aggressive phenotype. To better characterize the predictive performance of prognostic models based on EMT and angiogenesis, further large-scale prospective studies are required.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。