Retinoic Acid-Induced Transglutaminase 2 Expression Reduces Sensitivity to Cisplatin in the Hormone-Positive MCF-7 Breast Cancer Cell Model.

视黄酸诱导的转谷氨酰胺酶 2 表达降低了激素阳性 MCF-7 乳腺癌细胞模型对顺铂的敏感性

阅读:12
作者:Lawani-Luwaji Ebidor U, Pike Claire V S, Coussons Peter J
Cisplatin is an effective chemotherapeutic drug, but is limited both by its toxicity and its tendency to induce drug resistance rapidly in some patients. Tissue transglutaminase 2 (TG2), which is overexpressed in various cancers, has two main isoforms: a long (TG2-L) and a short form (TG2-S). While TG2-L supports cell survival, conversely, TG2-S promotes cell death. Evidence increasingly suggests that TG2 may be a suitable target for combating chemoresistance in a variety of human cancers. Here, we show that cisplatin toxicity towards wild-type MCF-7 breast cancer cells is associated with reduced TG2-L and TG2-S expression, whereas approximately doubling the TG2-L expression through the retinoic acid pre-treatment of these cells induces survival in the presence of cisplatin at levels similar to those seen in long-term cisplatin-co-cultured cells, which have reduced sensitivity. The treatment of cisplatin-surviving cells with cisplatin alone did not significantly alter the levels of either TG2 isoform, whereas the cisplatin challenge of cisplatin-surviving MCF-7 cells following 20 µM retinoic acid pre-treatment resulted in increased levels of TG2-L, increased TG2 enzyme activity, and no significant change in TG2-S levels, with increased cell survival. These findings suggest a subtype-specific regulatory effect of RA in cisplatin-surviving MCF-7 cells, with TG2-L upregulated at higher RA concentrations, potentially contributing to altered cisplatin sensitivity. Anti-TG2 siRNA silencing reduced cisplatin IC50 to base levels in both wild-type and cisplatin-surviving MCF-7 cells, supporting the notion that the modulation of TG2 expression could offer a significant benefit to cisplatin efficacy. Preventing excessive retinoic acid exposure may also be a mechanism for maximising cisplatin efficacy, considering TG2 modulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。