The reconstruction of large osteoarticular defects caused by tumor resection or severe trauma remains a clinical challenge. Current metal prostheses exhibit a lack of osteo-chondrogenic functionality and demonstrate poor integration with host tissues. This often results in complications such as abnormal bone absorption and prosthetic loosening, which may necessitate secondary revisions. Here, we propose a paradigm-shifting "living prosthesis" strategy that combines a customized 3D-printed hollow titanium humeral prosthesis with engineered bone marrow condensations presenting bone morphogenetic protein-2 (BMP-2) and transforming growth factor-β3 (TGF-β3) from encapsulated silk fibroin hydrogels. This innovative approach promotes in situ endochondral defect regeneration of the entire humeral head while simultaneously providing immediate mechanical support. In a rabbit model of total humerus resection, the designed "living prosthesis" achieved weight, macroscopic and microscopic morphologies that were comparable to those of undamaged native joints at 2 months post-implantation, with organized osteochondral tissues were regenerated both around and within the prosthesis. Notably, the "living prosthesis" displayed significantly higher osteo-integration than the blank metal prosthesis did, as evidenced by a 3-fold increase in bone ingrowth and a 2-fold increase in mechanical pull-out strength. Furthermore, the "living prosthesis" restored joint cartilage function, with rabbits exhibiting normal gait and weight-bearing capacity. The successful regeneration of fully functional humeral head tissue from a single implanted prosthesis represents technical advance in designing bioactive bone prosthesis, with promising implications for treating extreme-large osteochondral defects.
Living joint prosthesis with in-situ tissue engineering for real-time and long-term osteoarticular reconstruction.
利用原位组织工程技术构建的活体关节假体,用于实时和长期的骨关节重建
阅读:8
作者:Sun Wei, Wu Hongwei, Yan Yiyang, Zhang Xianzhu, Yao Xudong, Li Rui, Zuo Jingyi, Li Wenyue, Ouyang Hongwei
| 期刊: | Bioactive Materials | 影响因子: | 20.300 |
| 时间: | 2025 | 起止号: | 2025 Feb 26; 48:431-442 |
| doi: | 10.1016/j.bioactmat.2025.01.036 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
