Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1). While TSC neurological phenotypes are well-documented, it is not yet known how early in neural development TSC1/2-mutant cells diverge from the typical developmental trajectory. Another outstanding question is the contribution of homozygous-mutant cells to disease phenotypes and whether phenotypes are also present in the heterozygous-mutant populations that comprise the vast majority of cells in patients. Using TSC patient-derived isogenic induced pluripotent stem cells (iPSCs) with defined genetic changes, we observed aberrant early neurodevelopment in vitro, including misexpression of key proteins associated with lineage commitment and premature electrical activity. These alterations in differentiation were coincident with hundreds of differentially methylated DNA regions, including loci associated with key genes in neurodevelopment. Collectively, these data suggest that mutation or loss of TSC2 affects gene regulation and expression at earlier timepoints than previously appreciated, with implications for whether and how prenatal treatment should be pursued.
Human TSC2 mutant cells exhibit aberrations in early neurodevelopment accompanied by changes in the DNA Methylome.
人类 TSC2 突变细胞在早期神经发育中表现出异常,并伴有 DNA 甲基化组的变化
阅读:6
作者:Chalkley Mary-Bronwen L, Guerin Lindsey N, Iyer Tenhir, Mallahan Samantha, Nelson Sydney, Sahin Mustafa, Hodges Emily, Ess Kevin C, Ihrie Rebecca A
| 期刊: | Human Molecular Genetics | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 6; 34(8):684-698 |
| doi: | 10.1093/hmg/ddae199 | 种属: | Human |
| 研究方向: | 神经科学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
