The furin cleavage site is required for pathogenesis, but not transmission of SARS-CoV-2.

弗林蛋白酶切割位点是 SARS-CoV-2 致病所必需的,但并非其传播所必需的

阅读:5
作者:Morgan Angelica L, Vu Michelle N, Zhou Yiyang, Lokugamage Kumari G, Meyers William M, Alvarado R Elias, Ahearn Yani, Estes Leah K, Plante Jessica A, Johnson Bryan A, Suthar Mehul S, Walker David H, Plante Ken S, Menachery Vineet D
The SARS-CoV-2 spike, key to viral entry, has two features that differentiate it from other sarbecoviruses: the presence of a furin cleavage site (FCS; PRRAR sequence) and an extended S1/S2 loop characterized by an upstream QTQTN amino acid motif. Our prior works show that shortening the S1/S2 loop by deleting either the FCS (ΔPRRA) or deleting an upstream sequence (ΔQTQTN), ablates spike processing, alters host protease usage, and attenuates infection in vitro and in vivo. With the importance of the loop length established, here we evaluated the impact of disrupting the FCS, but preserving the S1/S2 loop length. Using reverse genetics, we generated a SARS-CoV-2 mutant that disrupts the FCS (PQQAR) but maintains its extended S1/S2 loop. The SARS-CoV-2 PQQAR mutant has reduced replication, decreased spike processing, and attenuated disease in vivo compared to wild-type SARS-CoV-2. These data, similar to the FCS deletion mutant, indicate that loss of the furin cleavage site attenuates SARS-CoV-2 pathogenesis. Importantly, we subsequently found that the PQQAR mutant is transmitted in the direct contact hamster model despite lacking an intact FCS. However, competition transmission showed that the mutant was attenuated compared to WT SARS-CoV-2. Together, the data argue that the FCS is required for SARS-CoV-2 pathogenesis but is not strictly required for viral transmission.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。