Viral Satellites Exploit Phage Proteins to Escape Degradation of the Bacterial Host Chromosome.

病毒卫星利用噬菌体蛋白来逃避细菌宿主染色体的降解

阅读:4
作者:McKitterick Amelia C, Hays Stephanie G, Johura Fatema-Tuz, Alam Munirul, Seed Kimberley D
Phage defense systems are often found on mobile genetic elements (MGEs), where they constitutively defend against invaders or are induced to respond to new assaults. Phage satellites, one type of MGE, are induced during phage infection to promote their own transmission, reducing phage production and protecting their hosts in the process. One such satellite in Vibrio cholerae, phage-inducible chromosomal island-like element (PLE), sabotages the lytic phage ICP1, which triggers PLE excision from the bacterial chromosome, replication, and transduction to neighboring cells. Analysis of patient stool samples from different geographic regions revealed that ICP1 has evolved to possess one of two syntenic loci encoding an SF1B-type helicase, either of which PLE exploits to drive replication. Further, loss of PLE mobilization limits anti-phage activity because of phage-mediated degradation of the bacterial genome. Our work provides insight into the unique challenges facing parasites of lytic phages and underscores the adaptions of satellites to their ever-evolving target phage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。