Identification of a novel class of cyclic penta-peptides against hepatitis C virus as p7 channel blockers.

鉴定出一类新型的抗丙型肝炎病毒的环状五肽,作为p7通道阻滞剂

阅读:4
作者:Wei Shukun, Liu Chaolun, Du Lingyu, Wu Bin, Zhong Jin, Tong Yimin, Wang Shuqing, OuYang Bo
The hepatitis C virus (HCV) p7 viroporin protein is essential for viral assembly and release, suggesting its unrealised potential as a target for HCV interventions. Several classes of small molecules that can inhibit p7 through allosteric mechanisms have shown low efficacy. Here, we used a high throughput virtual screen to design a panel of eight novel cyclic penta-peptides (CPs) that target the p7 channel with high binding affinity. Further examination of the effects of these CPs in viral production assays indicated that CP7 exhibits the highest potency against HCV among them. Moreover, the IC(50) efficacy of CP7 in tests of strain Jc1-S282T suggested that this cyclopeptide could also effectively inhibit a drug-resistant HCV strain. A combination of nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations revealed that CP7 blocking activity relies on direct binding to the p7 channel lumen at the N-terminal bottleneck region. These findings thus present a promising anti-HCV cyclic penta-peptide targeting p7 viroporin, while also describing an alternative strategy for designing a new class of p7 channel blockers for strains resistant to direct-acting antiviral agents (DAA).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。