Engineering coupled consortia-based biosensors for diagnostic.

工程耦合的基于联合体的生物传感器用于诊断

阅读:5
作者:Huang Rongying, Kravchik Valeriia, Zaatry Rawan, Habib Mouna, Geva-Zatorsky Naama, Daniel Ramez
Synthetic multicellular systems have great potential for performing complex tasks, including multi-signal detection and computation through cell-to-cell communication. However, engineering these systems is challenging, requiring precise control over the cell concentrations of distinct members and coordination of their activity. Here, we develop a bacterial consortia-based biosensor for Heme and Lactate, wherein members are coupled through a global shared quorum-sensing signal that simultaneously controls the activity of the diverse biosensing strains. The multicellular system incorporates a gene circuit that computes the minimum between each biosensor's activity and the shared signal. We evaluate three consortia configurations: one where the shared signal is externally supplied, another directly produced via an inducible gene circuit, and a third generated through an incoherent feedforward loop (IFFL) gene circuit. Among these configurations, the IFFL system, which maintains the shared signal at low and stable levels over an extended period, demonstrates improved performance and robustness against perturbations in cell populations. Finally, we examine these coupled consortia to monitor Lactate and Heme in humanized fecal samples for diagnostics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。