A Spin-Tip Enrichment Strategy for Simultaneous Analysis of N-Glycopeptides and Phosphopeptides from Human Pancreatic Tissues.

一种用于同时分析人胰腺组织中N-糖肽和磷酸肽的旋转尖端富集策略

阅读:5
作者:Tabang Dylan Nicholas, Wang Danqing, Li Lingjun
Mass spectrometry can provide deep coverage of post-translational modifications (PTMs), although enrichment of these modifications from complex biological matrices is often necessary due to their low stoichiometry in comparison to non-modified analytes. Most enrichment workflows of PTMs on peptides in bottom-up proteomics workflows, where proteins are enzymatically digested before the resulting peptides are analyzed, only enrich one type of modification. It is the entire complement of PTMs, however, that leads to biological functions, and enrichment of a single type of PTM may miss such crosstalk of PTMs. PTM crosstalk has been observed between protein glycosylation and phosphorylation, the two most common PTMs in human proteins and also the two most studied PTMs using mass spectrometry workflows. Using the simultaneous enrichment strategy described herein, both PTMs are enriched from post-mortem human pancreatic tissue, a complex biological matrix. Dual-functional Ti(IV)-immobilized metal affinity chromatography is used to separate various forms of glycosylation and phosphorylation simultaneously in multiple fractions in a convenient spin tip-based method, allowing downstream analyses of potential PTM crosstalk interactions. This enrichment workflow for glyco- and phosphopeptides can be applied to various sample types to achieve deep profiling of multiple PTMs and identify potential target molecules for future studies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。