Design, Synthesis, and Anticancer Evaluation of New Small-Molecule EGFR Inhibitors Targeting NSCLC and Breast Cancer.

针对非小细胞肺癌和乳腺癌的新型小分子 EGFR 抑制剂的设计、合成和抗癌评价

阅读:12
作者:Sever Belgin, Otsuka Masami, Fujita Mikako, Ciftci Halilibrahim
EGFR is the most frequently altered driver gene in non-small-cell lung cancer (NSCLC), and its overexpression is also associated with breast cancer. In the present study, we synthesized 18 new compounds (B-1, B-2, B-6, B-7, and BP-1-14). The cytotoxicity of these compounds was evaluated in A549 NSCLC and MCF-7 breast cancer cells, as well as in Jurkat cells and PBMCs (healthy). The most potent compounds were further examined for their ability to induce apoptosis in A549 and MCF-7 cells, as well as their EGFR inhibitory activity. Molecular docking was conducted at the ATP-binding site of EGFR, and key pharmacokinetic and toxicity parameters were predicted in silico. B-2 demonstrated the strongest cytotoxicity against A549 and MCF-7 cells (IC(50) = 2.14 ± 0.83 μM and 8.91 ± 1.38 μM, respectively), displaying selective cytotoxicity between Jurkat cells and PBMCs (SI = 23.2). B-2 induced apoptosis in A549 and MCF-7 cells at rates of 16.8% and 4.3%, respectively. B-2 inhibited EGFR by 66% at a 10 μM concentration and showed a strong binding affinity to the ATP-binding site of EGFR. Furthermore, B-2 exhibited drug-like characteristics and was not identified as carcinogenic, genotoxic, or mutagenic. B-2 shows promise as an apoptosis inducer and EGFR inhibitor for future anti-NSCLC and anti-breast cancer research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。