Identifying Immunomodulatory Subpopulations of Adipose Stromal Vascular Fraction and Stem/Stromal Cells Through Single-Cell Transcriptomics and Bulk Proteomics.

通过单细胞转录组学和批量蛋白质组学鉴定脂肪基质血管组分和干/基质细胞的免疫调节亚群

阅读:20
作者:Parsons Adrienne M, Ahsan Nagib, Darling Eric M
A primary therapeutic characteristic of mesenchymal stem/stromal cells (MSCs) is their immunomodulatory activity. Adipose-derived stem/stromal cells (ASCs) are an abundant and easily isolated source of MSCs shown to have high immunosuppressive activity, making them attractive for therapy. Understanding the heterogeneous immunomodulatory potential of ASCs within the stromal vascular fraction (SVF) of adipose tissue could better inform treatment strategies. In this study, we integrate single-cell RNA sequencing (scRNA seq) with bulk proteomics to characterize subpopulations of SVF-derived ASCs that are phenotypically similar to cytokine-licensed, cultured ASCs. To better define the licensing process, we present scRNA seq and bulk proteomics data of cultured (P2) ASCs exposed to inflammatory cytokines, showing enrichment of pathways related to inflammation and apoptosis that positively correlate to the cytokine-mediated, trajectory-derived pseudotime. Using the Scissor algorithm, we integrate the proteomics data with uncultured (P0) SVF scRNA seq data, identifying an ASC subpopulation that is phenotypically like the cytokine-stimulated ASCs (Scissor-positive). Interactome analysis identifies Scissor-positive ASCs as stress adaptive immune regulators that function through IL6 and broad SEMA4 interactions and higher Visfatin signaling, while Scissor-negative ASCs show strong signatures of ECM remodeling through FN1 and immunosuppression through THY1 and MIF signaling. Our multimodal, integrative approach enabled identification of previously unidentified, distinct ASC subpopulations with differing immunomodulatory phenotypes that are present in, and can potentially be selected from, P0 SVF ASCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。