Guava (Psidium guajava), referred to as the "tropical apple," is esteemed for its sweet flavor, nutritional density, and medicinal attributes, being rich in ascorbic acid, phenolics, carotenoids, fibers, and minerals. Despite its agricultural significance, guava cultivation faces considerable challenges from plant-parasitic nematodes, particularly root-knot nematodes from the Meloidogyne spp. In South America, Meloidogyne enterolobii causes severe root damage and economic losses to this crop. Plants fight nematodes through complex immune mechanisms involving pattern recognition receptors and signaling pathways, such as pattern-triggered immunity. The present research employed comparative shotgun proteomic analysis complemented by microscopic imaging and histochemical assays of roots from susceptible P. guajava and resistant P. guineense, inoculated or not with M. enterolobii. Psidium-M. enterolobii interactions revealed intricate plant cellular responses such as giant cells formation, hypersensitivity reactions, and biochemical pathway adjustments in sucrose transport and antioxidant enzyme activities. Synthesis and accumulation of secondary metabolites like terpenes, alkaloids, and phenolics in inoculated and resistant plants were positively correlated to plant resilience. Heat shock proteins and protein disulfide isomerases also emerged as pivotal in plant response, being upregulated during nematode infection. SUMMARY: The work addresses and unravels some of the puzzle pieces in the net of processes triggered in a plant prey (Psidium spp.), of either susceptible (P. guajava) or resistant (P. guineense) phenotypes, when confronted by its nematode predator (Meloidogyne enterolobii). The main alterations detected in the roots of these plants ranged from giant cells formation, hypersensitivity reactions, biochemical adjustments in sucrose transport pathways and in antioxidant enzyme activities, to increases in secondary metabolites (terpenes, alkaloids, and phenolics) and in heat shock proteins and protein disulfide isomerases. All these defensive mechanisms were triggered by the nematode attack on both species and were more prominent in P. guineense, which positively correlates them to the plant resistance against M. enterolobii.
Psidium Defenses Against Meloidogyne enterolobii: Proteomic and Microscopic Analysis of this Plant-Predator Association.
番石榴对根结线虫的防御:植物-捕食者关联的蛋白质组学和显微分析
阅读:19
作者:de Oliveira Costa Sara Nállia, da Paschoa Roberta Pena, Alexandrino Camilla Ribeiro, Cremonez Pamela Maciel, Ribeiro Juliana Martins, da Cunha E Castro José Mauro, Da Cunha Maura, Silveira Vanildo, Oliveira Antônia Elenir Amâncio, Fernandes Kátia Valevski Sales
| 期刊: | Proteomics | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug;25(16):17-27 |
| doi: | 10.1002/pmic.70015 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
