Stimulatory and inhibitory G-protein signaling relays drive cAMP accumulation for timely metamorphosis in the chordate Ciona.

刺激性和抑制性 G 蛋白信号传递驱动 cAMP 积累,从而实现脊索动物尾索动物的及时变态发育

阅读:5
作者:Hozumi Akiko, Totsuka Nozomu M, Onodera Arata, Wang Yanbin, Hamada Mayuko, Shiraishi Akira, Satake Honoo, Horie Takeo, Hotta Kohji, Sasakura Yasunori
Larvae of the ascidian Ciona initiate metamorphosis tens of minutes after adhesion to a substratum via their adhesive organ. The gap between adhesion and metamorphosis initiation is suggested to ensure the rigidity of adhesion, allowing Ciona to maintain settlement after losing locomotive activity through metamorphosis. The mechanism producing the gap is unknown. Here, by combining gene functional analyses, pharmacological analyses, and live imaging, we propose that the gap represents the time required for sufficient cyclic adenosine monophosphate (cAMP) accumulation to trigger metamorphosis. Not only the Gs pathway but also the Gi and Gq pathways are involved in the initiation of metamorphosis in the downstream signaling cascade of the neurotransmitter GABA, the known initiator of Ciona metamorphosis. The mutual crosstalk of stimulatory and inhibitory G-proteins functions as the accelerator and brake for cAMP production, ensuring the faithful initiation of metamorphosis at an appropriate time and in the right situation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。