Metallothionein (MT) is a highly conserved, low-molecular-weight (â¼7 kDa), cysteine-thiol-rich, stress response protein essential to cellular homeostasis. Elevated MT levels can be induced in cells during response to oxidative stress, glucocorticoids, essential divalent cationic metals, toxic heavy metal cations, acute-phase cytokines, interferon-γ, and/or endotoxin exposure. MT isoforms 1 and 2 are expressed across most tissues/cells and are localized in cytosolic, nuclear, and extracellular environments, despite the absence of a signal peptide. Extracellular MT (eMT) plays a significant role in inflammatory disease by acting as a signal that modifies the functional profile of inflammatory cells. Treatment with anti-MT monoclonal antibody (UC1MT), which presumably targets the eMT, in various mouse models of inflammatory disease significantly reduces disease severity. This study examines the effects of eMT on T lymphocyte gene expression at exposure times of 5-90 min in vitro. Jurkat T-cells were treated with eMT alone or in combination with UC1MT, revealing distinct gene expression changes at all time points, with the most substantial effects observed at 90 min. The results demonstrated eMT's influence on G-protein-coupled receptor (GPCR) gene expression and cell proliferation, confirmed through calcium flux and Carboxyfluorescein Succinimdiyl Ester (CFSE) proliferation assays. An analysis at the 90-min time point identified a positive feedback loop wherein eMT induces additional MT messenger ribonucleic acid (mRNA) expression. Using an MT-GFP fusion vector, transfected Jurkat T-cells verified that eMT stimulates both MT transcript and protein expression. This study underscores eMT's role as an alarmin and its capacity to potentiate inflammatory disease by modulating gene and protein expression in T lymphocytes.
Extracellular metallothionein: An alarmin regulating lymphocyte gene expression, cell signaling, and immune function.
细胞外金属硫蛋白:一种调节淋巴细胞基因表达、细胞信号传导和免疫功能的报警素
阅读:7
作者:Maltz-Matyschsyk Michele, Melchiorre Clare K, Dostie-Laprise Kristen, Lynes Michael A
| 期刊: | Cell Stress & Chaperones | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Jul 31; 30(5):100106 |
| doi: | 10.1016/j.cstres.2025.100106 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
