CLIPPER 2.0: Peptide-Level Annotation and Data Analysis for Positional Proteomics.

CLIPPER 2.0:用于定位蛋白质组学的肽段水平注释和数据分析

阅读:11
作者:Kalogeropoulos Konstantinos, Moldt Haack Aleksander, Madzharova Elizabeta, Di Lorenzo Antea, Hanna Rawad, Schoof Erwin M, Auf dem Keller Ulrich
Positional proteomics methodologies have transformed protease research, and have brought mass spectrometry (MS)-based degradomics studies to the forefront of protease characterization and system-wide interrogation of protease signaling. Considerable advancements in both sensitivity and throughput of liquid chromatography (LC)-MS/MS instrumentation enable the generation of enormous positional proteomics datasets of natural and protein termini and neo-termini of cleaved protease substrates. However, concomitant progress has not been observed to the same extent in data analysis and post-processing steps, arguably constituting the largest bottleneck in positional proteomics workflows. Here, we present a computational tool, CLIPPER 2.0, that builds on prior algorithms developed for MS-based protein termini analysis, facilitating peptide-level annotation and data analysis. CLIPPER 2.0 can be used with several sample preparation workflows and proteomics search algorithms and enables fast and automated database information retrieval, statistical and network analysis, as well as visualization of terminomic datasets. We demonstrate the applicability of our tool by analyzing GluC and MMP9 cleavages in HeLa lysates. CLIPPER 2.0 is available at https://github.com/UadKLab/CLIPPER-2.0.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。