Evidential deep learning-based drug-target interaction prediction.

基于深度学习的药物靶点相互作用预测

阅读:4
作者:Zhao Yanpeng, Xing Yuting, Zhang Yixin, Wang Yifei, Wan Mengxuan, Yi Duoyun, Wu Chengkun, Li Shangze, Xu Huiyan, Zhang Hongyang, Liu Ziyi, Zhou Guowei, Li Mengfan, Wang Xuanze, Chen Zhengshan, Li Ruijiang, Wu Lianlian, Zhao Dongsheng, Zan Peng, He Song, Bo Xiaochen
Drug-target interaction (DTI) prediction is a crucial component of drug discovery. Recent deep learning methods show great potential in this field but also encounter substantial challenges. These include generating reliable confidence estimates for predictions, enhancing robustness when handling novel, unseen DTIs, and mitigating the tendency toward overconfident and incorrect predictions. To solve these problems, we propose EviDTI, a novel approach utilizing evidential deep learning (EDL) for uncertainty quantification in neural network-based DTI prediction. EviDTI integrates multiple data dimensions, including drug 2D topological graphs and 3D spatial structures, and target sequence features. Through EDL, EviDTI provides uncertainty estimates for its predictions. Experimental results on three benchmark datasets demonstrate the competitiveness of EviDTI against 11 baseline models. In addition, our study shows that EviDTI can calibrate prediction errors. More importantly, well-calibrated uncertainty information enhances the efficiency of drug discovery by prioritizing DTIs with higher confident predictions for experimental validation. In a case study focused on tyrosine kinase modulators, uncertainty-guided predictions identify novel potential modulators targeting tyrosine kinase FAK and FLT3. These results underscore the potential of evidential deep learning as a robust tool for uncertainty quantification in DTI prediction and its broader implications for accelerating drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。