Post-translational modifications are an essential process for proper protein function and localization. In particular, lipid modification plays a crucial role in the spatial regulation of proteins functioning on a lipid membrane surface. While cell-free protein synthesis allows rapid protein production, technical advances in lipidation modification are behind. Here, we developed a cell-free system for the myristoylation and palmitoylation of proteins. Based on our previous study, we improved myristoylation efficiency by trimming a precursor nascent peptide, which undergoes lipidation at the N-terminal glycine. We also found that N-myristoyltransferase (NMT) catalyzes both myristoylation and palmitoylation. The localization of lipidated proteins onto liposomes is further aided by the insertion of polyarginine residues downstream of the NMT recognition site. Finally, we demonstrated that lipidation of VHH antibodies and localization onto liposomes resulted in target-specific binding to cancer cells. This system offers a platform for displaying soluble proteins on lipid membranes, with potential applications in developing liposomes for targeted cell binding.
Lipid Modification and Membrane Localization of Proteins in Cell-Free System.
无细胞体系中脂质修饰和蛋白质膜定位
阅读:6
作者:Matsumoto Rena, Niwa Tatsuya, Kuno Kaori, Shimane Yasuhiro, Kuruma Yutetsu, Kanamori Takashi
| 期刊: | ACS Synthetic Biology | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 18; 14(7):2729-2738 |
| doi: | 10.1021/acssynbio.5c00155 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
