Proteomic profiling uncovers sexual dimorphism in the muscle response to wheel running exercise in the FLExDUX4 murine model of facioscapulohumeral muscular dystrophy.

蛋白质组学分析揭示了 FLExDUX4 面肩肱型肌营养不良小鼠模型中肌肉对轮跑运动反应的性别二态性

阅读:17
作者:Nishimura Yusuke, Bittel Adam, Jagan Abhishek, Chen Yi-Wen, Burniston Jatin
FLExDUX4 is a murine experimental model of facioscapulohumeral muscular dystrophy (FSHD) characterized by chronic, low levels of leaky expression of the human full-length double homeobox 4 gene (DUX4-fl). FLExDUX4 mice exhibit mild pathologies and functional deficits similar to people affected by FSHD. Proteomic studies in FSHD could offer new insights into disease mechanisms underpinned by post-transcriptional processes. We used mass spectrometry-based proteomics to quantify the abundance of 1322 proteins in triceps brachii muscle, encompassing both male and female mice in control and free voluntary wheel running (VWR) in Wild-type (n=3) and FLExDUX4 (n=3) genotypes. We report the triceps brachii proteome of FLExDUX4 mice recapitulates key skeletal muscle clinical characteristics of human FSHD, including alterations to mitochondria, RNA metabolism, oxidative stress, and apoptosis. RNA-binding proteins exhibit a sex-specific difference in FLExDUX4 mice. Sexual dimorphism of mitochondrial protein adaptation to exercise was uncovered specifically in FLExDUX4 mice, where females increased, but males decreased mitochondrial proteins after a 6-week of VWR. Our results highlight the importance of identifying sex-specific diagnostic biomarkers to enable more reliable monitoring of FSHD therapeutic targets. Our data provides a resource for the FSHD research community to explore the burgeoning aspect of sexual dimorphism in FSHD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。