Defining the Molecular Impacts of Humalite Application on Field-Grown Wheat (Triticum aestivum L.) Using Quantitative Proteomics.

利用定量蛋白质组学确定腐植酸施用对田间种植小麦(Triticum aestivum L.)的分子影响

阅读:7
作者:Grubb Lauren E, Talasila Mohana, Gorim Linda Y, Uhrig Richard Glen
Increasing global food production demands have resulted in increased fertilizer usage, causing detrimental environmental impacts. Biostimulants, such as humic substances, are currently being applied as a strategy to increase plant nutrient-use efficiency and minimize environmental impacts within cropping systems. One of these biostimulants is Humalite, which is a unique, naturally occurring coal-like substance found in deposits across southern Alberta. These deposits contain exceptionally high ratios of humic acids (>70%) and micronutrients due to their unique freshwater depositional environment. Humalite has begun to be applied to fields based on scientific data suggesting positive impacts on crop growth, yield, and nutrient usage; however, little is known about the underlying molecular mechanisms of Humalite. Here, as part of a larger field study, we report a quantitative proteomics approach to identify systems-level molecular changes induced by the addition of different Humalite application rates in field-grown wheat (Triticum aestivum L.) under three urea fertilizer application rates. In particular, we see wide-ranging abundance changes in proteins associated with several metabolic pathways and growth-related biological processes that suggest how Humalite modulates the plant molecular landscape. Overall, our results provide new, functional information that will help better inform agricultural producers on optimal biostimulant and fertilizer usage.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。