Vertebrate development from an egg to a complex multi-cell organism is accompanied by multiple phases of genome-scale changes in the repertoire of proteins and their post-translational modifications. While much has been learned at the RNA level, we know less about changes at the protein level. In this paper, we present a deep analysis of changes of â¼15,000 proteins and â¼11,500 phospho-sites at 11 developmental time points in Xenopus laevis embryos ranging from the stage VI oocyte to the juvenile tadpole. We find that the most dramatic changes to the proteome occur during the transition to functional organ systems, which occurs as the embryo becomes a tadpole. At that time, the absolute amount of non-yolk protein increases two-fold, and there is a shift in the balance of expression from proteins regulating gene expression to receptors, ligands, and proteins involved in cell-cell and cell-environment interactions. Between the early and late tadpole, the median increase for membrane and secreted proteins is substantially higher than that of nuclear proteins. To begin to appreciate changes at the post-translational level, we have measured quantitative phospho-proteomic data across the same developmental stages. In contrast to the significant protein changes that are concentrated at the end of the time series, the most significant phosphorylation changes are concentrated in the very early stages of development. A clear exception are phosphorylations of proteins involved in gene expression: these increase just after fertilization, with patterns that are highly correlated with the underlying protein changes. To facilitate the interpretation of this unique phospho-proteome data set, we created a pipeline for identifying homologous human phosphorylations from the measured Xenopus phospho-proteome. Collectively, our data reveal multiple coordinated transitions in protein and phosphorylation profiles, reflecting distinct developmental strategies and providing an extensive resource to further explore developmental biology at the proteomic and phospho-proteomic levels.
Transitions in the proteome and phospho-proteome during Xenopus laevis development.
非洲爪蟾发育过程中蛋白质组和磷酸化蛋白质组的转变
阅读:18
作者:Van Itallie Elizabeth, Sonnett Matthew, Kalocsay Marian, Wühr Martin, Peshkin Leonid, Kirschner Marc W
| 期刊: | Developmental Biology | 影响因子: | 2.100 |
| 时间: | 2025 | 起止号: | 2025 Sep;525:155-171 |
| doi: | 10.1016/j.ydbio.2025.05.022 | 种属: | Xenopus |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
