In cancer, genetic and transcriptomic variations generate clonal heterogeneity, leading to treatment resistance. Long-read single-cell RNA sequencing (LR scRNA-seq) has the potential to detect genetic and transcriptomic variations simultaneously. Here, we present LongSom, a computational workflow leveraging high-quality LR scRNA-seq data to call de novo somatic single-nucleotide variants (SNVs), including in mitochondria (mtSNVs), copy number alterations (CNAs), and gene fusions, to reconstruct the tumor clonal heterogeneity. Before somatic variant calling, LongSom reannotates marker gene-based cell types using cell mutational profiles. LongSom distinguishes somatic SNVs from noise and germline polymorphisms by applying an extensive set of hard filters and statistical tests. Applying LongSom to human ovarian cancer samples, we detected clinically relevant somatic SNVs that were validated against matched DNA samples. Leveraging somatic SNVs and fusions, LongSom found subclones with different predicted treatment outcomes. In summary, LongSom enables de novo variant detection without the need for normal samples, facilitating the study of cancer evolution, clonal heterogeneity, and treatment resistance.
De novo detection of somatic variants in high-quality long-read single-cell RNA sequencing data.
从高质量长读单细胞RNA测序数据中检测体细胞变异
阅读:5
作者:Dondi Arthur, Borgsmüller Nico, Ferreira Pedro F, Haas Brian J, Jacob Francis, Heinzelmann-Schwarz Viola, Beerenwinkel Niko
| 期刊: | Genome Research | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 14; 35(4):900-913 |
| doi: | 10.1101/gr.279281.124 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
