Hepatocyte-specific angiotensinogen deficiency inhibits Western diet-induced liver steatosis with suppression of cell division in mice.

肝细胞特异性血管紧张素原缺乏可抑制西方饮食诱导的小鼠肝脂肪变性,并抑制细胞分裂

阅读:13
作者:Pettey Alex C, Ye Dien, Ito Sohei, Daugherty Alan, Lu Hong S, Sawada Hisashi
Liver steatosis is a common cause of chronic liver disease. To investigate the molecular basis of hepatic steatosis, low-density lipoprotein receptor-deficient (LDLR -/-) mice were fed a Western diet (WD, 42% of calories from fat) for 5, 14, or 42 days and evaluated against mice fed a normal laboratory diet. Histological analyses revealed that steatosis was detected as early as 14 days of WD feeding. Bulk RNA sequencing demonstrated that WD feeding altered liver transcriptomes related to inflammation and cell adhesion consistent with the progression of liver steatosis. Previous studies determined that hepatocyte-specific deficiency of angiotensinogen (AGT), the unique substrate of the renin-angiotensin system (RAS), alleviates WD-induced hepatic steatosis in mice. However, the effects of hepatic AGT deficiency were not mimicked by pharmacological inhibition of the RAS, and the molecular mechanisms by which AGT deficiency protects against WD-induced steatosis is unknown. Therefore, liver transcriptomes were compared between hepatocyte-specific AGT-deficient mice (hepAGT -/-) and their wild-type littermates (hepAGT +/+) after 14 days of WD feeding. Gene ontology analyses showed that upregulated genes in hepAGT -/- mice were enriched for metabolic processes and downregulated genes were enriched for cell division pathways. The integration analysis of the two RNA sequencing data identified 5 key genes, Smpd3, Dtl, Cdc6, Mki67, and Top2a, which were primarily associated with cell division processes in hepAGT +/+ mice and were suppressed in hepAGT -/- mice. In conclusion, hepatic AGT deficiency downregulated genes related to cell division during the progression of liver steatosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。