Senescence-specific molecular subtypes stratify the hallmarks of the tumor microenvironment and guide precision medicine in bladder cancer.

衰老特异性分子亚型可对肿瘤微环境的特征进行分层,并指导膀胱癌的精准治疗

阅读:5
作者:Yan Luzhe, Liang Haisu, Qi Tiezheng, Deng Dingshan, Liu Jinhui, He Yunbo, Chen Jinbo, Fan Benyi, Yao Yiyan, Wang Kun, Zu Xiongbing, Chen Minfeng, Dai Yuanqing, Hu Jiao
BACKGROUND: Bladder cancer (BLCA) is notably associated with advanced age, characterized by its high incidence and mortality among the elderly. Despite promising advancements in models that amalgamate molecular subtypes with treatment and prognostic outcomes, the considerable heterogeneity in BLCA poses challenges to their universal applicability. Consequently, there is an urgent need to develop a new molecular subtyping system focusing on a critical clinical feature of BLCA: senescence. METHODS: Utilizing unsupervised clustering on the Cancer Genome Atlas Program (TCGA)-BLCA cohort, we crafted a senescence-associated molecular classification and precision quantification system (Senescore). This method underwent systematic validation against established molecular subtypes, treatment strategies, clinical outcomes, the immune tumor microenvironment (TME), relevance to immune checkpoints, and identification of potential therapeutic targets. RESULTS: External validations were conducted using the Xiangya cohort, IMvigor210 cohort, and meta-cohort, with multiplex immunofluorescence confirming the correlation between Senescore, immune infiltration, and cellular senescence. Notably, patients categorized within higher Senescore group were predisposed to the basal subtype, showcased augmented immune infiltration, harbored elevated driver gene mutations, and exhibited increased senescence-associated secretory phenotype (SASP) factors expression in the transcriptome. Despite poorer prognoses, these patients revealed greater responsiveness to immunotherapy and neoadjuvant chemotherapy. CONCLUSIONS: Our molecular subtyping and Senescore, informed by age-related clinical features, accurately depict age-associated biological traits and its clinical application potential in BLCA. Moreover, this personalized assessment framework is poised to identify senolysis targets unique to BLCA, furthering the integration of aging research into therapeutic strategies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。